Cudy 5G Router (P5) External Antenna Guide

Looking to get the best possible data rates from your Cudy 5G P5 Router?

You’ll want to purchase and connect external MIMO antennas to the device’s four SMA cellular antenna ports.

In this guide, we'll:

  • Recommend the best external antennas to use.
  • Show where the SMA ports are located.
  • Explain how to aim the antennas for best results.

The Best External Antennas for the Cudy 5G P5 Router

Using a MIMO antenna outside your building, pointed towards you best incoming cell service, can help provide you with the fastest LTE data rates possible.

The Cudy 5G P5 Router has four SMA cellular antenna ports on the back, which allow for a 4x4 MIMO antenna to be connected to the device.

We recommend two different 4x4 MIMO antenna options for use with the Cudy 5G P5 Router:

BEST FOR MOST USERS
4x4 MIMO Panel Antenna Kit

This 4x4 MIMO Panel Antenna kit will provide meaningful signal improvement, even if you're surrounded by trees, hills, or tall buildings.

For most users the best external antenna choice for the Cudy 5G P5 Router is our 4x4 MIMO Panel Antenna kit. While still directional, this antenna doesn’t require line-of-sight to the tower.

BEST WITH LINE OF SIGHT

4x4 MIMO Log Periodic Antenna Kit

These Cross-polarized Log Periodic Antennas have higher gain and are more directional, but work best if you have direct line-of-sight to the tower.

However, if you have line of sight to the nearest tower, we recommend using a 4x4 MIMO Log Periodic Antenna kit instead. The higher gain on these antennas can get you better performance, but only when you have a straight shot to the tower.

Why External Antennas Are Critical for Improving Data Rates

There's one big misconception about external antennas.

Most people think that external antennas primarily help you increase your data rates by increasing the signal strength, but that's not the case.

An increase in signal strength is actually probably the third most important way that external antennas help.

Here are the three main ways that external antennas help you increase your data rates:

1.They Improve Signal Quality

In 4G LTE networks, signal quality is measured as SINR (Signal to Interference plus Noise Ratio) or sometimes as RSRQ (Reference Signal Received Quality).

Improving signal quality has a huge impact on your data rates.

Higher data rates allow your hotspot to communicate using "higher order modulation schemes." That means they can use the same wireless spectrum to send more data per second.

However, there's one big caveat: In order to improve your signal quality, you need to both aim and shield your outdoor antenna properly. We talk more about this in the next section.

2.They Allow You To Connect On More Bands

Cellular Routers like the Cudy 5G P5 support an LTE feature called "carrier aggregation."

Carrier aggregation allows for the ability to connect on multiple cellular bands simultaneously.

The more bands you're connected on, the greater the bandwidth, and the higher your data rates.

However, many of the higher frequency bands aren't able to penetrate into buildings. Using external antennas allows you to access higher frequency bands, which are often less congested and offer higher speeds than lower frequency bands.

3.They Increase Your Signal Strength

As you might expect, using outdoor directional antennas can help increase the signal strength.

This helps increase data rates, but only up to a point.

If your signal strength (called "RSRP" in LTE networks) is stronger than about -100 dBm, stronger signal won't speed up your connection any further.

Installing External Antennas to the Cudy 5G P5 Router

Before getting started, it's always a good idea to run a couple of speed tests indoors from a device connected to the Wifi of your Cudy 5G P5 Router. The results will fluctuate a little, but this is the baseline you're trying to improve.

Once you've tested your baseline internet speeds, you're ready to install external antennas.

The Cudy 5G P5 Router has four SMA cellular antenna ports grouped on the back of the device; they are labeled Cellular ANT0, Cellular ANT1, Cellular ANT2, and Cellular ANT3 and would be used to connect to MIMO external antenna(s).

In the next section of this guide, we'll show you how to best connect adapters for external antennas to your Cudy 5G P5 Router.

Step-by-Step Guide to Installing Adapters for External Antennas

Step 1: Disconnect the standard paddle antennas that are connected to the "Cellular" antenna ports, according to the MIMO Antenna kit you own (2x2 or 4x4):

  • If you have a 2x2 MIMO Antenna Kit, disconnect the standard paddle antennas on "Cellular ANT0" and "Cellular ANT2" and keep the standard paddle antennas on "Cellular ANT1" and "Cellular ANT3" connected.
  • If you have a 4x4 MIMO Antenna Kit, disconnect the standard paddle antennas connected to all of these "Cellular" antenna ports.

Removing the stock cellular antennas from the Cudy 5G P5 Router

Step 2: Connect the external MIMO antennas to the newly available cellular SMA ports on your Cudy 5G P5 Router, according to the MIMO Antenna kit you own (2x2 or 4x4):

  • If you have a 2x2 MIMO Antenna Kit, you will connect your cables to "Cellular ANT0" and "Cellular ANT2" and the order does not matter.
  • If you have a 4x4 MIMO Antenna Kit, you will connect your cables in the order shown below:

Cudy 5G P5 cellular antenna port order

Congrats! Your Cudy 5G P5 Router is now connected to your more powerful MIMO External Antennas. You are now ready to go outside and test your system!

Positioning and Aiming MIMO Antennas

Correctly positioning and aiming MIMO antennas is crucial to getting the best performance to your Cudy 5G P5 Router, or indeed any other router.

We've compiled a detailed 4x4 MIMO instruction manual to accompany our own MIMO Antenna Kits, where we go into depth on the best ways to aim the antennas.

The goal is to find the best location and direction for the antenna(s), to maximize data rates to the Cudy 5G P5 Router. It can take a little patience, but can have a huge impact – it’s worth a bit of extra effort!

Once you've got your external MIMO antennas connected, you're ready to go outside with your "test-rig".

With each location and direction you try, run a couple speed tests, and make a note of the results. Here are all the locations and directions where we recommend testing your MIMO antenna:

Where to test your signal

Pro tip: Don’t just go to the highest point of the roof! While signal is generally stronger the higher you go, there’s also often more interference. We’ve found it’s often better to mount the antenna(s) on the side of the building where the structure can shield the antennas from interference.

Once you've found the position which gets you the highest data rates to the Cudy 5G P5 Router, that's where you'll want to install the MIMO antenna. Go ahead and mount the antenna, run cables inside, connect everything up, and enjoy superior data rates!

Advanced Optimization

If you've gone through the trouble of installing and accurately aiming a MIMO Antenna Kit, you're likely already getting excellent data rates from your Cudy 5G P5 Router.

That said, there's always more that can be done!

Band locking is a great way to optimize data rates through an LTE router or hotspot. The idea is that you test every different frequency band being received by your device, and lock it onto the band that results in the best data rates.

The Cudy 5G P5 Router are one of few routers to allow manual band locking in their web interface - here's a step by step guide of how to do it.

Band Locking the Cudy 5G P5

The reason this works so well, is because different frequency bands transmit with different bandwidths.

Generally speaking, higher frequency bands (like 1900 MHz and 2100 MHz) offer more bandwidth but travel less far and penetrate building materials less well than lower frequency bands (like 700 MHz and 800 MHz).

As a result of travelling less far, higher frequency bands tend to be less “congested” - they have fewer users connected to them, and data rates are often faster.

This isn’t always the case though, sometimes a lower frequency band may have better data rates, depending on your location.

This can be quite time consuming, but often results in significant improvements to data rates.

We'll keep the steps below as simple and concise as possible!

Step 1: Access the Cudy's web interface

  • Use a laptop to connect to your Cudy's WiFi network, and open a web browser.
  • Enter "http://cudy.net/" (or "http://192.168.10.1/") into the URL bar to log into the Cudy's web interface.
  • Login to the interface with your username and password - default password is "admin".

There's a fair amount of useful and interesting information to be found in the web interface. For now, we're only interested in the band locking feature.

Step 2: Lock the Cudy 5G P5 to a frequency band

  • In the top menu, navigate to "General Settings" -> "4G" -> "APN".
  • Select the button next to "Band Select" and to turn it to the "ON" position.
  • From the list, select the band you'd like your Cudy 5G P5 to lock to.

Note: "5G Bands" be displayed alongside the "LTE Bands" for the Cudy 5G P5 webportal.

Once you hit "Save & Apply" to select a new frequency band, the Cudy 5G P5 Router will take a few minutes to reboot. Once it's back up and running, connect to it's WiFi network again.

Now, lets test each available band in your area, to determine which band(s) will result in the best data rates.

Step 3: Test and select the best tower and frequency band

  • Look up your nearby towers. This can be time consuming and accuracy is often questionable - we've listed our suggestions in an article on the Best Ways to Locate Nearby Cell Towers.
  • Aim your external MIMO antenna(s) at each nearby tower and band lock the Cudy 5G P5 to each band that the tower transmits.
  • Run 3 to 4 speed tests on each band to find the fastest bands. Speedtest.net is a great tool for this.
  • Repeat this for every tower in your area, and make notes of the speed test results you get from each band and tower combination.

Once you've identified the best tower and band combination, lock your MoFi to that band(s), and make sure your outdoor antenna is secured so that it doesn't move in the wind.

Note: Since the Cudy 5G P5 Router has the ability to carrier aggregate (i.e. combine the service of multiple different frequency bands into one), it may be worthwhile to bandlock to more than one band.

Cudy 5G P5 Technical Specifications

Supported 4G LTE bands

  • AT&T: B2, B4, B5, B12, B14, B17, B29, B30, B66
  • Verizon: B2, B4, B5, B13, B46, B48, B66
  • T-Mobile: B2, B4, B5, B12, B25, B41, B66, B71
  • Other: B1, B3, B7, B8, B18, B19, B20, B26, B28, B32, B34, B39, B40, B42, B43

Supported 5G bands

  • AT&T: n5, n77
  • Verizon: n2, n5, n40, n66, n77
  • T-Mobile: n41, n71
  • Other: n1, n3, n7, n8, n12, n20, n25, n28, n38, n48, n78, n79

Cellular Modem

  • Modem Chipset: Quectel RM502Q
  • MIMO Support: 4x4 w/ external antennas
  • LTE-A Carrier Aggregation: 5x Download, 3x Upload
  • LTE Performance Category: Cat 18
  • Max Theoretical Speeds: 1.2 Gbps Download, 150 Mbps Upload

Wi-Fi

  • Wi-Fi Version: Wi-Fi 6
  • Technologies: 802.11 ax
  • Bands: Simultaneous 2.4 GHz and 5.0 GHz bands

Ports

  • Cellular Antenna Ports: 4x SMA-Female
  • SIM Ports: 2x SIM (1x Redundant SIM slot)
  • Other Ports: 1x GbE WAN/LAN, 3x GbE LAN

Other

  • CPU: Qualcomm Dual Core 1GHz

Other Helpful Resources

Is this article helpful?
0 0 0